

ATMAS Mathematics Specialist

Test 2

Calculator Free

S	H	E	N	T	0	N	
C	0	L	L	E	G	E	

Teacher:

Mr Smith

Time Allowed: 30 minutes

Marks

/28

Materials allowed: No special materials.

Attempt all questions.

All necessary working and reasoning must be shown for full marks.

Where appropriate, answers should be given in exact values.

Marks may not be awarded for untidy or poorly arranged work.

1 Determine which of the following functions are one-to-one. For those functions which are (6)one-to-one, find their inverse.

a) $(x-2)^2 + (y+3)^2 = 16$

Not one-to-one.

b) $y = \frac{1}{x - 2}$

$$y^{-2} = \frac{1}{2}$$

$$y = \frac{1}{2} + 2$$

c) $(x-2)^2+4$

Not one-to-one.

d) $(x-2)^3+4$

$$(y-2)^3 = x-4$$

Below is a graph of y = f(x). On the same set of axes, sketch the graph of $y = f^{-1}(x - 2)$. (3)

If $f(x) = \sin 2x$ and $g(x) = x^2 + 2$, Determine g(f(x)), giving the domain and range of the composition. (3)

If
$$f(x) = e^x$$
 and $g(x) = \frac{1}{x-1}$,

If $f(x) = e^x$ and $g(x) = \frac{1}{x-1}$, a) Determine g(f(x)), giving the domain and range of the composition.

(3)

(3)

$$gol(\infty) = \frac{1}{e^{\infty}-1}$$

- D: KER, X = O
- P: y < -1, y > 0

Draw a rough sketch of the composite function y = g(f(x)), indicating any important features.

If
$$h(x) = \frac{1}{4x}$$
 and $h(k(x)) = 2^{2-2x-2x^2}$, find the equation of $k(x)$. (4)

If
$$h(x) = \frac{1}{4x}$$
 and $h(k(x)) = 2^{2-2x-2x^2}$, find the equation of $k(x)$.

$$h(x) = 2^{-2x}$$

$$= h(k(x)) = 2 - 2k(x)$$

$$= h(k(x)) = 2 - 2x - 2x^2$$

$$= -2k(x) = 2 - 2x - 2x^2$$

$$= -2k(x) = 2 - 2x - 2x^2$$

$$= -2k(x) = x^2 + x - 1$$

(3)

The function
$$f(x)$$
 is defined as $f(x) = |x + 1| + |x - 2|$.

$$f(x) = \begin{cases} \frac{-2c+1}{3} & \text{for } x < -1\\ \frac{2c-1}{3} & \text{for } -1 \le x \le 2 \end{cases}$$

$$x < -1$$
.
 $-(x+1) + -(x-2)$ $-1 \le x \le 2$.
 $-(x+1) + -(x-2)$ $(x+1) + (x-2)$
 $= -2x + 1$ $= 3$ $= 2x - 1$

b) Sketch the function
$$f(x) = |x + 1| + |x - 2|$$
 on the set of axes below. (3)

ATMAS Mathematics Specialist

CI		- NATON	Test 2 Calculator Assumed					
C 0		ENTON	Name:					
			Teacher:	Mr Smith				
		Time	Allowed	l : 25 min	utes	Marks	/34	
		<u> </u>						
		Where appropri	v orking and red iate, answers si	hould be given t	e shown for full i o <u>two</u> decimal pla ly arranged work	aces.		
1		For a line passing through the point $\binom{3}{-4}$ and parallel to the vector $\binom{-2}{1}$, find						
	a)	representation to the first become an experience of the contraction of						
		~ =	(3)+	> (-5)				
	b)	The parametric e		(2)				
ł								
		y =	-4+ A					
1	c)	The Cartesian equation of the line.						
		λ= y+4		×	+24+5.	=0		
		x = 3 - 2 $x = 3 - 2y$	-	Or	$y = \frac{-1}{2}$	5-2.		
2		Line L ₁ has the v	vector equation	$\mathbf{r} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \lambda$	$\binom{3}{2}$. Find the equ	nation of L ₂ , a line	(2)	
perpendicular to L_1 and passing through position $\binom{4}{3}$.								

$$r = {4 \choose 3} + \nu {-2 \choose 3}$$
 or similar

- You may use your Classpad to find intercepts, these do not need to be shown algebraically.
- · You may also use your Classpad to calculate any derivates required, however, you must then clearly show how you would interpret the relevant calculus to assist you with your

a)
$$y = \frac{2x^2}{x+2}$$
 $y = \frac{2x^2}{x+2}$
 $y = \frac{2x^2}{x+2}$
 $y = \frac{2x^2 + 4x}{x+8} + \frac{4x + 8}{x+8} + \frac{8}{x+2}$

Vertical assymptote at $x = -2$.

$$y = \frac{2x^2 + 4x}{x+2} - \frac{4x + 8}{x+8} + \frac{8}{x+2}$$

$$y = \frac{2x^2 + 4x}{x+2} - \frac{4x + 8}{x+2} + \frac{8}{x+2}$$

$$y = \frac{2x^2 + 8x}{x+2}$$

For synthetic

$$y = \frac{2x^2 + 8x}{x+2}$$

$$y = \frac{2x^2 + 8x}{x+2}$$

$$y = \frac{2x^2 + 8x}{x+2}$$

$$y = \frac{8}{x+2}$$

$$y =$$

=> x=0 or 21=-4 2x-4+ 8 (nature & y-coord from CAS) => Max at (-4,-16) min at (0,0)

=> oblique assymptote of y= 2x-4.

1 stationary points I graph.

$$y = \frac{x+1}{x-1}$$

vertical assymptote at x=1.

$$U = \frac{x-1}{x-1} + \frac{2}{x-1}$$

$$= 1 + \frac{2}{x-1}$$

=> horizontal assymptote at y=1.

$$\frac{dy}{dx} = \frac{-2}{(2c-1)^2}$$

=> no stationary points

Vertical at 1. I show harizontal I show no stationary // graph + point.

(5)

c)
$$y = \frac{x+2}{(x-1)(x+4)}$$

Vertical assymptotes at x = 1 and x = -4.

$$\frac{dy}{dx} = \frac{x^2 + 4x + 10}{\left(x^2 + 3x - 4\right)^2}$$

no real solutions

=> no stationary points

$$\frac{d^2y}{dx^2} = 0$$

=> >c2 -1.67

vertical inflection at x = -1.67

Vertical

√ show no stationary.

√ inflection.

✓ end limits

✓ graph + point

Three snooker players, Eddie, Neil and Warren, are trying to set up a trick shot for a competition. The black ball is placed at certain position on the table. When a subtle signal is given, all three players shoot at exactly the same time and aim their shots to hit the black exactly 0.6 seconds later.

Neil starts from position $\begin{pmatrix} -30 \\ -14 \end{pmatrix}$ and shoots with velocity $\begin{pmatrix} 60 \\ 40 \end{pmatrix}$.

Warren intends to use a velocity of $\begin{pmatrix} -90 \\ -30 \end{pmatrix}$, but has yet to determine the correct starting position.

The third player, Eddie, plans to start his shot at $\binom{-45}{49}$ but has yet to refine the correct velocity with which he should shoot.

[As always, assume the balls are points with zero radius for the purposes of your calculations.]

a) Determine an appropriate vector for Warren's position and Eddie's velocity so that the three players can complete the trick successfully. (7)

Part of collision
$$\begin{pmatrix} -30 \\ -14 \end{pmatrix} + 0.6 \begin{pmatrix} 60 \\ 40 \end{pmatrix}$$

$$= \begin{pmatrix} 6 \\ 10 \end{pmatrix}.$$

// Use Neil to find collision point.

warren.
$$\binom{36}{9} + 0.6 \binom{-90}{-30} = \binom{6}{10}$$
 /equation $\binom{36}{9} = \binom{60}{28}$ warren's position is $\binom{60}{28}$ /solve

Eddie
$$\begin{pmatrix} -45 \\ 49 \end{pmatrix} + 0.6 \begin{pmatrix} P \\ q \end{pmatrix} = \begin{pmatrix} 6 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix} P \\ q \end{pmatrix} = \frac{10}{6} \begin{pmatrix} 51 \\ -39 \end{pmatrix}$$

$$= \begin{pmatrix} 85 \\ -65 \end{pmatrix} \text{ Eddie's velocity is } \begin{pmatrix} 85 \\ -65 \end{pmatrix}.$$

b) Determine the angle between Neil and Warren's shots when they hit the black ball. (2)

Using direction vectors
$$\tilde{n} = \begin{pmatrix} 60 \\ 40 \end{pmatrix}$$
 and $\tilde{\omega} = \begin{pmatrix} -90 \\ -30 \end{pmatrix}$

Vuse of dot product

Angle ~ 165°